QUANTITATIVE NMR IN PROFILING OF BIOREFINERY PRODUCTS

Reino Laatikainen, Department of Pharmacy, UEF, Kuopio, Finland

http://chemadder.com

NMR METABONOMICS LABORATORY (MLAB)

HIGH-THROUGHPUT NMR METABONOMICS

High-Throughput Serum NMR Metabonomics
Pasi Soininen

QMTLS (Quantum Mechanical Total-Line-Shape) Analysis *User interface of program qQMTLS*

NMR Spectrum (at 600 MHz) of an ABOWE sample

Aliphatic Region

2,3-Butanediol has a unique signal

A compound can be identified also from splittings (coupling constants) of multiplets: couplings do not depend on instrument or sample

Detection of mannitol

Spiking is sometimes used to ensure identification a component in complex samples

Quantum Mechanical Spectral Analysis (QMSA)

Chemical shift (v) = weight point of multiplet Coupling constant $(J) \approx \text{difference of two lines} => \text{fine structure}$

INDEPENDENT OF INSTRUMENTATION ...unlike MS!!

If chemical shifts, coupling constants & line-shape are given, spectrum (even the smallest details) can be simulated quantum mechanically!

=> Model spectra (for quantitative analysis)

A problem: line-widths and chemical shifts (less) depend on sample, which means that a sophisticated software is needed for accurate quantification, ...a simple regression analysis does not work.

Quantitative QMSA of an ABOWE sample using 23 metabolites:

Sometimes spectral lines are broadened by Fe & Mn-ions, like above.

REPORT

&QM NAME N PROTONS				POPULATION	MOL%	mMOL	Weight(mg/ml)
%Q	lactate	1	4	0.9004E+01	9.0918	86.3675	
%Q	acetate	2	3	0.1680E+02	16.9621	161.1321	9.6679
%Q	ala	3	4	0.6009E+01	6.0681	57.6442	5.1303
%Q	valine	4	8	0.2383E+01	2.4059	22.8546	2.5140
%Q	leu	5	10	0.2505E+01	2.5291	24.0256	3.1474
%Q	ile	6	10	0.1930E+01	1.9491	18.5155	2.4255
%Q	etoh	7	5	0.7797E+01	7.8735	74.7941	3.4405
%Q	butyrate	8	7	0.7870E+00	0.7947	7.5494	0.6643
%Q	propio	9	5	0.1874E+01	1.8922	17.9750	1.3661
%Q	glu	10	5	0.9932E-02	0.0100	0.0953	0.0141
%Q	beta	11	7	0.8427E+01	8.5091	80.8322	14.5498
%Q	alfa	12	7	0.5282E+01	5.3338	50.6687	9.1204
%Q	gly	13	2	0.1311E+01	1.3236	12.5734	0.9430
%Q	thr	14	5	0.9269E+00	0.9360	8.8912	1.0581
%Q	phe	15	8	0.1850E+01	1.8678	17.7434	2.6793
%Q	3pheprop	16	9	0.2500E+00	0.2524	2.3980	0.3597
%Q	creatine	17	5	0.1144E+01	1.1552	10.9735	0.9766
%Q	gaba	18	6	0.9932E-02	0.0100	0.0953	0.0098
%Q	asp	19	3	0.1473E+01	1.4870	14.1258	1.8787
%Q	mannitol	20	8	0.9783E+01	9.8790	93.8454	17.0799
%Q	23bud	21	8	0.1504E+02	15.1904	144.3013	12.9871
%Q	sucrose	22	14	0.4436E+01	4.4791	42.5497	16.0838
%Q	tsp	23	9	0.9685E+00	0.9779	9.2900	1.3573
	_						
TOT	AL(excl. :	refe	cence)	= 99.0315	100.0000	949.9510	113.8694

QMTLS - APPLICATIONS

- Up to 100 metabolites in one sample?
- Dynamic range of 0.01-100 mol%
- Concentrations > 0.01-M
- Applications:
 - Any mixtures and impurity analysis
 - Biofluids: plasma, CSF, lipid extracts of serum, urine,
 - Bioextracts, juices, ...

Linearity & confidence limits

Calculated vs. real impurity concentrations (in mol%) $R^2 = 0.995$

NO CALIBRATION NEEDED!!

CONS & PROS

- + Sample preparation, .. just filter and add reference
- + No calibration
- + Semiquantitative analysis of sample at one glance
- + Chemical confidence (identification of components directly from spectrum),..also carbohydrates (not with MS)
- + ASL (Adaptive Spectrum Libraries)
- + Almost automatical analysis
- Some expertise needed
- Not very sensitive, sample size > 0.3 ml
- Instrumentation (ca. 20€/sample, depends on n), ..liquid Helium and Nitrogen

COCLUSIONS and answers to questions presented after speech

Is ON-LINE possible with NMR?

- In principle, yes, in fact NMR could allow automatic follow-up of the process once in a few minutes.
- Unfortunately, not yet feasible with the presently available instruments, ..but probably in near future with the new instruments (previous slide).

Are the new low field (40-100 MHz) instruments useful?

Not for the <u>water solutions</u>! The minimum useful field is probably 200-400 MHz and demands far better water suppression and sensitivity than in the new < 100 MHz instruments.

RECOMMENDATION:

- NMR is invaluable in checking composition and detecting metabolites (especially sugars) of fermentation products, whenever starting materials or protocols are changed.
- NMR suits perfectly to calibration of methods like GC and HPLC; it is not necessary to prepare the calibration samples containing accurate known concentrations of metabolites (which may be unavailable).